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An optimization method based on a genetic algorithm (GA) and a boundary
element method is applied to solve an electrical impedance tomography problem.
The scheme is applied to reconstruct highly irregular shapes and to image and count
objects inside a host medium of different impedance. A Pareto multiobjective op-
timization method is applied to improve the performance of the GA. Comparisons
between the GA and a calculus-based method for selected test problems show that the
calculus-based method outperforms the GA in simple cases but that for more com-
plex cases the GA reaches the correct solution whereas the calculus-based method
does not. A hybrid scheme that we developed combining a calculus-based method
and the GA is shown to be the most efficient and robust even when applied to the
complex cases we tested. The sensitivity of the current scheme is evaluated in the
presence of noise. © 2001 Academic Press

Key Words:electrical impedance tomography; genetic algorithm; boundary ele-
ment method; inverse problem.

1. INTRODUCTION

Electrical impedance tomography (EIT) is a powerful imaging technique with a wic
variety of applications requiring visualization of inaccessible objects or features. The
include multiphase flows [1, 2], visualizing combustion [3], medical imaging [4], nonde
structive evaluation of structures, determination of underground contaminant seepage
In the EIT technique, the distribution of conductivity inside a domain is sought by applyil
specified currents (or voltages) at some parts of the interrogated domain surface
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FIG. 1. Schematic of the electrical impedance tomography method.

performing measurements of the voltages (or currents) at other parts. The equations
the electric field then provide a relationship between the conductivity distribution inside t
domain and the measured currents (or voltages). Solution of the resulting inverse prob
then provides a map of the material distribution in the domain. A schematic of the E
procedure is shown in Fig. 1. According to the user specifications, a control board arran
combinations of injection electrodes to form current (or voltage) patterns. The resulti
voltages (or currents) are then measured at all combinations of measurement electre
The data on all voltages and currents over all injection and measurement electrodes are
stored using data acquisition boards, and used in the reconstruction procedure which |
inverse problem solution.

InEIT the equations are nonlinear and the inverse problem is solved by iterative technic
involving optimization procedures. Each iterative step requires solution of a boundary va
problem, followed by the solution of a minimization problem. Schemes based on the fin
element method [5, 6] are time consuming and require extensive computational resour
which make them difficult for practical usage, especially in 3D. We have developed [7-]
an efficient solution procedure based on the boundary element method (BEM) offer
substantial speed-ups over conventional techniques. In our previous studies we have ap
calculus-based optimization methods and a least squares approach, which combine
error evaluation function into a single objective function, to solve the inverse problel
These calculus-based methods such as the Powell method and the downhill simplex me
were able to quickly reach the optimal solution for many cases we have studied. Howe
we encountered difficulties in robustness when the test cases became too complex, and
the desired global minimum was hidden among many local minima. Furthermore, the le
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squares approach has the disadvantage of subsuming a detailed spatial error distrib
into one all encompassing error function, which can have multiple local minimums.

Genetic algorithms (GAs), such as described by Holland [11] and Goldberg [12], are in
ligent search methods based on a biological evolution mechanism concept and on Darv
survival-of-the-fittest theory for solving complex problems. They are problem-independ
and can process information generated at previous stages of a search process. They cor
concepts such as natural selection, quick exploration, and information collection in a de:
space. In contrast to most classical optimization methods, a GA requires no gradient ir
mation and results in simultaneous determination of multiple minima rather than a sin
local minimum. These characteristics make the GAs powerful tools for solving optimizati
problems. Since a GA has the characteristic of maintaining a population of solution «
can search in parallel for many objectives, it inherently satisfies the requirement of seel
a Pareto optimal set in a multiobjective optimization problem. Therefore, it does not
quire combining multiple objectives into a single objective and can incorporate the conc
of Pareto optimization [13] to solve an EIT multiobjective problem. This method allow
taking into account all physical restrictions simultaneously and avoids the occurrence
cancellation effects between the various objectives as encountered in our previous st
[7-10].

The BEM approach that we have previously developed [14, 15]is applied here to solve
forward EIT problem in which for a given conductivity distribution we compute the curren
(or voltages) at selected nodes resulting from input voltages (or currents) at other no
The inverse problem is then solved by applying optimization methods which minimi
the error between the predicted and the measured currents (or voltages). In this study
optimization schemes, the Powell method and a basic GA, are applied and their performa
are compared for several test problems. To take advantage of the strengths of both met
we then developed a hybrid scheme combining the GA and the Powell method to impr
the performance of the optimization routine. All the example cases considered in the pre
study concern imaging the interior of a material of a given fixed conductivity (such a:
metal or a liquid), which contains inclusions of zero or negligible conductivity (such as g
bubbles).

2. GOVERNING EQUATIONS

Consider an electrical impedance tomography problem where the voltage at sele
points on the boundary is imposed. The current at boundary locations other than the ¢
trodes is zero. At the electrodes the electrical current is measured in order to obtain
distribution of conductivityg, in the material. For a regia? bounded by the surfac® the
electric potentialp, satisfies the following equation expressing electric charge conservatic

V[ (V)] =0in Q. 1)

With n being the unit normal vector to the boundary surfecis, subjected to the following
boundary conditions:

¢

oa—n and¢ known at the electrodes,
2

g—ﬁ =0 at the rest of the boundary.
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Unfortunately, a direct method for obtainiagrom these equations is not readily available.
Instead, an inverse problem is solved through scanning and analysis of a wide spac
guessed distributions of conductivity. For each guessed distributiomdbrward problem

is solved for the electric potentigl Then, minimization of the error between the predictec
and the measured valuesgobn the boundary is soughtin the space of guessed distributiol
of . The forward problem procedure solution is repeated as many times as necessary
satisfactory convergence is achieved.

In many applications, the domain to be imaged consists of regions of almost const
conductivity,o1, embedded in a continuous phase of another material of almost const
conductivity,o (e.g., a spatial multiphase distribution: solid, liquid, or gas). In this case tt
goal of the imaging is to determine the location of the interf&ggsSince the conductivity
is practically constant within each of the materials, the field equation reduces to

V3¢ =0inQ, i=1,2, (3)

wherei = 1, 2 represents each of the two substances. The boundary conditions at the o
surface are given by Eq. (2). In addition, the conditions of continuity of the potential al
flux at the unknown interface(§,; can be written as

a
bl = b5, o1

Snt an

(4)

In these problems the forward problem consists of the solution of the Laplace equatiol
each medium using the coupling boundary conditions Eq. (4).

An additional important simplification arises if the interfaces to be imaged enclose ma
rials of vanishing conductivity. Such situations are common in practice, e.g., in determini
the distribution of air bubbles in a liquid or cracks in a structure. In this special case, 1
boundary conditions reduce to

0
% =0 onSy. (5)
Therefore, instead of solving the conductivity distribution, the objective of the problem

now to obtain the material interfacg;;.

3. NUMERICAL METHOD

The inverse problem in EIT can be addressed by a standard multistep, multidimensic
optimization procedure, which consists of:

1. Parameterization: Parameterize the guessed conductivity distribution or shape of
terial interface.

2. Forward problem solver: Solve the Laplace equation corresponding to the gues
parameters.

3. Objective function: Evaluate the difference between the numerical solution of t
guessed distribution and the actual measurement.

4. Optimization: Make a series of guesses of the parameters and obtain the final gt
by minimizing the objective function.
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3.1. Parameterization

One efficient way to make the iterative optimization routine successful is to parametel
the conductivity distribution, i.e., the conductivity distribution is represented in terms of
suitably selected descriptive basis function with a set of coefficients/parameters. Since
present algorithm is for imaging the interior of a material that consists of regions of const
conductivity, the parameterization can be selected to describe the shape and location c
internal objects. For example, the shape of an internal object in a 2D configuration car
represented by the sum of a serief\oE.egendre polynomials

N-1

S(0) =) _ akPk(cost — b), (6)

k=0

where S is the distance from the origin selected to describe the olgjeat), andé is
the angle from a reference direction described by an additional paraggetey is the
Legendre polynomial of ordek, andayx are N unknown parameters. This results in a
total of N + 3 parameters for each object. A similar parameterization but using Four
components was recently published [16]. Another possibility of describing the intert
object is to parameterize the object with the coordinatds pbints in addition to those at
its center. Each point is at a distangefrom the center of the object:

S@) =r«, k=1,...,N. @)

This results in atotal o + 2 parameters for each object. For the relatively simple standa
2D problem of identifying cylindrical objects of vanishing conductivity inside a cylindrica
container, each internal object can be parameterized by its radars] the coordinate of its
center. Similarly, for three-dimensional case of a container with internal regions consist
of spheres of vanishing conductivity, each internal sphere is parameterized by itsradiu
and the coordinate of its centex, (y, 2).

3.2. Forward Problem Solver

To solve the forward problem at each iteration, a numerical scheme is required to s
the Laplace Eq. (3). In the current study we have selected the boundary element me
for its great advantage of considerably reducing computational time especially for thr
dimensional problems when compared to the finite element method. Indeed, by requi
discretization of only the boundary instead of the full domain, the BEM reduces the dim
sion of the problem by one and leads to orders of magnitude reduction in memory and C
time requirements.

The boundary element method is based on an integral solution of the Laplace eque
using Green’s theorem, which can be written in the following form:

/(d)VZG —GV?p)dQ = /n [¢VG — GV¢]dS (8)
JQ S

whereG is Green'’s function. Equation (8) transfers the domain integral into the surfa
integral and thus reduces the dimension of the problem by®iseselected to be harmonic
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everywhere but at discrete points such as the electrodes

{ log|x —y| in2D,

: (9)
1
—5& in 3D,

wherex is a point inQ2 andy is a point on the boundary surfaBeSubstituting Eq. (9) into
Eq. (8), we have

arp(X) = /S Ny - [p(YVG(X,y) — G, y)Vo(y)]dS (10)

wherear is the angle in 2D (solid angle in 3D) under which the paistes the rest of the
domain. For formulations with smooth boundaries we have

2 Q in2D, i
:{ , X e in :{1,xeS in 2D, (11)

4, xe Q in3D, 2, xeS in3D.

To solve Eg. (10) numerically with the BEM, it is necessary to discretize the surface
all objects including the internal objects and the container into panels. In 2D we accompl
this by usingP segments witiN nodes along the boundary and by fitting cubic spline:
through the discrete points on the boundary. In 3D we Rsiiangular elements with
N nodes on the boundary. As a result of this discretization, every surface integral evalus
at any field pointx becomes a summation over all panels of the influence of singulari
distributions over each individual panel. This enables us to write Green’s identity in t
form

P 3G 3¢
arng(X) = kz_;/s‘(ﬂy)%(X, y) — G(X, Y)%(Y)> d&. (12)

To evaluate the integrals given in Eq. (12), it is necessary to prescribe the variagion ¢
andd¢/on. For this problem, we assume that these quantities vary continuously over a pe
and can be described by the surrounding nodes. By applying a cubic spline interpolatio
2D and a linear Lagrangian interpolation in 3D for each p&getach elementary integral
can be written as a linear combinatiorygodr 9¢ /dn evaluated at the surrounding nodes. The
performance of integration (including special cases that are singular when the colloca
node lies in the interval of integration) is an involved process, and details can be founc
our previous studies [14, 15]. With the integration over each panel performed, the discrei
Eq. (12) can be expressed as

d¢ . 2, in2D,
an g = ZZ[BK@ < )] J=1N. m:{s, nap, ¥

k=1 i=1

wheregk andde/ank are the potential and its normal derivative at noaé panelk, and
Ak and B are influence coefficients obtained from elementary integration.

Following a collection approach in which the contributions due to the same node
summed up, Eq. (13) can be rewritten as

N
angy =Y [Bo-A(5) ] i=1n, 14)

i=1
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whereA andB are the altered influence coefficients due to summation of the same nodé
is noted that the collection approach transfers the panel contribution in Eq. (13) to the n
contribution in Eq. (14). Equation (14) can be expressed in a matrix form as

(@l +Mp=B2, (15)
an
wherel isanN x N identity matrix, andh andB areN x N influence coefficient matrices.
With 3¢ /an known on all boundary nodes, Eq. (15) is alinear systeh efjuations and can
be readily solved foN unknowns ofp, using classical methods such as LU decompositio
and Gauss elimination.

3.3. Obijective Function

In the current study, the error between the predicted solution and the measured da
given by

g=¢f—pf I=1....,Mg, and k=1,...,Ng, (16)

wheregf andgf are the measured and predicted values of the potential at elettfode
the current injection configuratidg Mg is the number of measuring electrodes, ahdis
the number of experiments. We thus h&de x Ng measures of the errcm‘f.

Previously [7-10], we applied a least squares approach to construct a single objec
function using the following root mean square (RMS) error function:

Ne Mg

B CEE @

k=1 1=1

One shortcoming of performing the minimization using this single objective function is th
all the physical information available from each experiment at all electrodes are added
a single objective function. However, the physical information of the error distribution m:
have a spatial pattern that could be advantageously used. This information is useful fo
optimization routine to better characterize the predicted solutions so that the converge
rate can be enhanced. To better use this physical information, a multiobjective apprc
is therefore applied in the current study. To demonstrate this we apply the multiobject
approach to a two-dimensional cylindrical container. If thererggg objective functions
applied, then the objective functions for are constructed as follows:

Mo Ng ) M2+Mg/2 Ng )
fi= 2D @ -0l)"+ > > (-
1=M; k=1 I=M1+Mg/2 k=1
: . (18)
(i —1Mg iMg .
My=-——"C41 My= c =1, Nopj.
2n0bj 2n0bj

Based on Eq. (18), the objective functions will be formed each by adding the errors from
noncontiguous quarters on the container surface for a two objective approach. Howevel
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both single objective and multiobjective approaches the convergence speed is represe
by computing the normalized root mean square error

\/Zkl 2 ( ¢|).
Zkl |1( )2

In solving inverse problems, it is quite important to constrain the solution using a pric
information to mitigate any ill-posed character of the problem. For example, one can |
obvious geometric constraints such as the fact that the internal objects cannot overla
intersect the container, or that their size is bounded by known minimum and maximi
values. To cope with the constrained problem, the objective function is modified to rett
artificially very large values when presented with unrealizable configurations. These
made more or less large according to the degree of violation. In addition, for calculus-ba
methods the error gradient vector is set to the unit vector in the direction that leads a\
from the error.

(19)

3.4. Optimization Routines

The success of developing an efficient and robust EIT software highly relies on the o
mization routine. Here, several optimization routines, including a calculus-based meth
a random search algorithm, and a hybrid scheme, are applied and compared for severe
problems.

3.4.1. Powell Direction Set Method

The first method used here is the Powell direction set method also known as the David
Fletcher—Powell method. The Powell method applied in the current study is the vers
described in [17, 18] in which an initial guess and a set of independent search directi
are provided to the program. In each iteration the method serially performs a seque
of line minimizations along the various directions in the space of parameters. At the ¢
of each iteration the method replaces one of the original directions with the line joinil
the starting and ending points. Care is taken to ensure that the directions remain line
independent. The iteration is terminated when either the convergence rate or the ¢
between the predicted and the exact solutions are smaller than prescribed values.
version of the Powell method has been successfully applied to the EIT problem [7-10] :
widely applied to other optimization and minimization problems (see for instance [19-22
Although there are many other implementations of the Powell method such as describe
[23, 24], the current study does not intend to include a comparative study of the merits
each of these implementations.

3.4.2. Simple Genetic Algorithm

An implementation of a GA begins with the selection of a population of members. Ea
member in the population represents a guessed solution of the problemi.e., a set of par:
ters describing the shape and position of the sought objects). The GA identifies each mer
by encoding it as a chromosome (typically, bit strings). The objective function describ
above is an evaluation function that plays the role of the environment, rating the memt
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in terms of their fithess. This is the mechanism applied to select good quality members
population to reproduce the population of the next generation. The reproduction procec
is such that well-fit members are given more chance to reproduce than members whict
poorer performers. The process of evolving from a given population to the next populat
constitutes one generation in the execution of a GA. The basic implementation of a sin
genetic algorithm can be summarized as follows [12]:

Step 1, Initialization: Create an initial random population of members and identify ea
member with a chromosome (bit strings).

Step 2, Evaluation: Evaluate the fitness of each member in this population based or
corresponding value(s) of the objective function(s).

Step 3, Selection: Select two parent chromosomes from the current population to re
duce offsprings. The selection process is stochastic with the high fithess members b
more likely to be selected.

Step 4, Reproduction (crossover): Generate two offsprings from two parent chromoso
by exchanging bit strings.

Step 5, Mutation: Apply a random maodification of the bit strings to each offspring wit
a small probability.

Step 6, Iteration: Repeat Steps 2, 3, and 4 until the number of offsprings in the n
population is the same as the number of parents in the old population.

Step 7, Iteration: Go to Step 2.

To improve the search process of the global optimum, an additional operator, elitis
was implemented. Elitism forces the best individual to always be selected for reproduct
until someone comes along which is stronger to take over its place. After the populat
is generated, the GA checks to see if the best parent has been replicated. If not, th
random individual is chosen and the chromosome set of the best parent is mapped intc
individual.

To adapt the GA to the current problem, each guessed distribution of the internal obje
is identified by a binary chromosome. Since each internal object is parameterized ei
by the coordinates of its center and a series of Legendre polynomials or by the diste
of the surface nodes from its center, each set of parametérs= 1, K) is represented
in the genetic structure. This means that each objeckhaslependent variables, which
correspond t& genes represented as a bit string of total lefMtiEach parameter has its
own bit string of lengthL; (i = 1, K). If there areN objects inside a material, then each
possible distribution of internal bodies is represented as a binary chromosome of ler
M x N. Figure 2 shows an example of the representation of a chromosome. Since ¢
bit string represents an integ@rwhile each variable is given by a real valagwe chose
a mapping between the real valagp < a < ) and the integed (0 < J <L — 1) such
that the integer interval [®-~!] is mapped onto the real intervab[q].

3.4.3. Multiobjective Genetic Algorithm with Pareto Optimization

Instead of smearing all the information into a single objective, we implement a mul
objective optimization method incorporating the concept of Pareto optimal set [13]
exploit the knowledge of spatial distribution of the error.Pareto optimal setan be
described as follows: A point in the objective variables space is Pareto optimal if o
cannot find another point which is better with respect to at least one objective with
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Parameter Set
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T X
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Object 1 Object 2 Object N-1 Object N
Genel Gene2 Gene 3 Gene 4 Gene 1 Gene 2 Gene 3 Gene 4
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[ 1000001 || 1100011 | [ 00ves01 | [ 110se11 | [[00eee01 | [ 1000000 |[ 1100001 || 100011 |
[ ——
Bit string of length L,
- -
Bit string of Iength M
-— -

T
Binary chromosome of length NxM

FIG. 2. A sketch showing conversion of the parameter set describing a guessed solution into a chromos
bit string.

sacrificing with respect to at least one other objective. This means that the Pareto ¢
mum gives a set of nondominated points for which no objective can be improved wi
out degrading at least one other objective. Searching for the Pareto optimal set (a gt
of solutions) is the goal for solving the multiobjective problem. Once the Pareto op
mal set is determined, the decision maker is able to define the optimal solution from
Pareto optimal set according to other nonmodeled criteria. Since the GA has the ¢
acteristic of maintaining a population of solutions and can search in a parallel ms
ner for many nondominated solutions, the GA inherently satisfies the requirement
seeking a Pareto optimal set in a multiobjective optimization problem. Therefore,
use a Pareto GA similar to that suggested by Cheng and Li [13] to solve the curr
problem.

The current Pareto GA is constructed by revising the simple GA. Unlike the simf
GA, where the fitness function is determined directly from the objective function, i
the Pareto GA the fitness function of each individual is determined from its ranking. -
achieve this goal a ranking procedure [12] is used. At each generation nondominated <
tions are selected and assigned rank 1. From the remainder of the population, nondomir
solutions are identified and assigned rank 2. This process continues for rank 3, 4, and s
until the entire population is ranked. After the whole population is ranked, the fitness va
of points in ranki can be determined by the following [12]

M —i 4D
SN =i+ DN

(20)

whereM, is the population sizé| is the highest rank of the populatiaW, is the population
size of ranki, andF; is the fitness of a point rankéd
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| Generate Initial Population

[ Run EIch;nNard code |4

Rank:
Rank the population according to their nondominated property
v
Evaluation:
Calculate the filness value based on the rank of each individual

End Program Is converged solution achieved?

N Selection:
| Select two parents to be mated based on the fithess value
v
Reproduction:
Cross over two selected parents’ chromosomes to generate offsprings
v
Mutation:
Change chromosomes on a bit-by-bit basis with small probability

s offspring population
equal to initial population?

Elitism:
Replicate all parents of rank 1 in the offspring population

New Population

FIG. 3. Aflow chart for the Pareto optimization EIT multiobjective problem using a genetic algorithm.

To improve the search process of the Pareto optimal set, the current Pareto GA also
the elitism operator. However, instead of ensuring only reproduction of members with-
highest fitness, the elitism technique of the Pareto GA ensures that all members with 1
1 appear in the next generation. Figure 3 illustrates the multiobjective GA optimizati
scheme that we developed for the EIT problem.

3.4.4. Hybrid Optimization Scheme

Although the GA is recognized as a highly robust optimization scheme, the slow c«
vergence rate has prevented the GA from becoming practical in many applications. On
other hand, the calculus-based methods are known for their fast convergence speed bu
are very sensitive to the initial guess of the solution. Therefore, we exploited in the curr
EIT problem the benefit of combining the Powell method and the GA. The proposed hyk
scheme starts with the GA. The Powell method is turned on after a prescribed numbe
generationsNg, is iterated. The connection between the GA and the Powell method
made by choosing the best solution from the current population to be the initial guess
the Powell method. When the convergence rate of the Powell method reaches a pla
without reaching the criterion for global minimum, then the optimization routine returns
the GA which is made to iterate again fly generations, and the process is repeated unt
the global minimization criterion is reached.
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4. RESULTS AND DISCUSSION

4.1. Numerical Aspects

Inordertotestthe proposed method, we start by using the forward problem solverto ge
ate a set of ideal “experimental” data for a given distribution of internal objects. For the tw
dimensional case the ideal “experimental” data is collected at 20 electrodes on the conte
surface. Similarly, the container and each internal objective is discretized using 20 pan

Several parameters of the GA basic operators need to be determined for optimal pe
mance. These parameters include the mutation probability, the crossover probability,
discretized size of the parameters, and the population size. As suggested by Goldberg
the mutation probability was set to the inverse of the population size and the crossc
probability was set to 0.6. The solution accuracy of the GA depends heavily on the len
of the chromosome because alonger bit string yields a smaller discretized size of the pal
eters. The smaller the discretized size of the parameters is, the more accurate the sol
that can be obtained. Decreasing the discretized size of the parameters, however, incr
the search domain and leads to a slower convergence process. Therefore, a compron
necessary. In the present study, the discretized size was chosen to be less than 2%
characteristic length, which was selected here to be the smallest projected dimension o
imaged domain.

The determination of the population size depends on the complexity of the problem, €
number of internal objects and complexity of object shapes. The more complex the prob
is, the larger the population size should be. For a simple two-dimensional case, such as
or two internal objects with circular shape, a population with 50 individuals is sufficier
However, for a complex case a small population size may lead the GA to converge t
local minimum. To demonstrate the importance of the population size in a complex ca
two different population sizes, 50 and 100 were used for a two-dimensional four-cir
case with one of the circles being relatively small and somewhat hidden among the of
larger circles. Both cases were used to conduct a search until the convergence rate ree
a plateau. The converged solutions for using 50 and 100 individuals are compared to
exact solution and shown in Fig. 4. It is seen that with a smaller population size the GA «
not converge to the global minimum while with a larger population size the GA predict:
the solution quite well.

4.2. Comparison between Single and Multiobjective Approaches

Although it is expected that keeping spatial information in the error functions will im
prove the convergence rate, increasing the number of objective functions also slows d
the search process due to the overhead of keeping all first-rank individuals. To test
efficiency of using more than one objective function for our current problem, we tested b
single and two objective approaches for two-dimensional three-circle cases. Comparisc
convergence rates for these approaches is shown in Fig. 5. It is found that the two objec
approach reached the convergence criterion faster than single objective approach. Sir
comparative results were also observed for the two-dimensional four-circle case.

4.3. Comparison between Powell Method and Genetic Algorithm

We conducted systematic comparisons between our implementation of the Powell |
thod and of the GA in two- and three-dimensional cases. We found that in our case
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FIG. 4. The exact and reconstructed solutions of four-circle case using the genetic algorithm for populat
size of (a) 50 and (b) 100.

calculus-based Powell method outperforms the GA in simple cases, as shown by compa

of the convergence
method and the GA

histories for both one- and two-circle 2D cases in Fig. 6. Both the Pou
converged very well to the exact solution. The Powell method, howe

reached the exact solution much faster than the GA for both cases.

To increase the problem complexity, the number of circles was increased to 3 with Z
them very close to each other. Figure 7 shows the exact solution and the converged solu
of the Powell method and the GA in this case. A comparison of the convergence histories

10"

RMS Error
=}
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[ 2D Three Circles Case
.
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v
LN — Single Objective
B 1 ——-—-- Double Objectives
- 'l
-
L 1 L | L L L L | L L 1 L _ ‘f_ it L L |
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Number of Function Calls

FIG.5. The convergence histories of single and two objective approaches for the 2D three-circle case.
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FIG.6. Comparison of the convergence histories of the Powell method and the genetic algorithm for the @
and two-circle cases.

the Powell method and the GAis shownin Fig. 8. Itis seenthatin this case the Powell met
converged to a local minimum while the GA correctly found the global minimum. Althoug
we tested several different initial guesses for the Powell method, none of them reachec
exact solution. Similar comparisons were also conducted for two spheres (eight parame
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FIG.7. Comparison ofthe exactand reconstructed solutions using the Powell method and the genetic algor
for the three-circle case.
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FIG. 8. Comparison of the convergence histories of the Powell method and the genetic algorithm for
three-circle case.

in the three-dimensional case. Figure 9 shows the exact solution and the converged sol
of the Powell method for the two-sphere case. It is seen that after convergence one o
spheres is still offset from the exact solution. In this case the GA still preformed very w
and the converged solution ended indistinguishable to the eye from the exact solutior

FIG. 9. Exact and reconstructed solutions using the Powell method for the two-sphere case.
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FIG. 10. Comparison of the convergence histories between the genetic algorithm and the hybrid scheme
the 2D three-circle case.

both spheres. It is important to note that there are different implementations of the Pov
method. Although the version of the Powell method applied in the current study fails
reach the global minimum, there may be other versions of the Powell method that n
improve the result. Nevertheless, searching for the best version of the Powell method
not within the scope of the current study.

4.4. Comparison between the Genetic Algorithm and Hybrid Scheme

To demonstrate how the hybrid scheme can improve the convergence rate, we appli
to solve the three-circle case shown earlier viigh= 50. The comparison of convergence
histories between the GA and the hybrid scheme is shown in Fig. 10. It is seen that str
improvement is achieved when the Powell method is first turned on after 50 generati
(3000 function calls). The hybrid method reduces the error faster than the GA until 1
convergence rate reaches a plateau. The iteration process then returns back to the G;
continued for another 50 generations. When the Powell method is turned on again, a se
significant drop in the RMS error is observed and the global minimum is reached. Itis no
that the procedure can be further optimized by modification of the procedure parame
(e.g., number of generations before switching). The improvement in convergence rat
more significant when the studied case is more complicated. For very complex cases
GA may stop converging before reaching the global minimum because the homogen
of the chromosomes may be reached first. In this case, the improvement of the solu
will only rely on the mutation and become a very slow process. As shown in Fig. 11, f
a two-dimensional six-circle case the convergence rate of the GA reached a plateau w
the hybrid scheme withl; = 100 converged very fast. The final solutions of both scheme
are also compared with the correct answer and are shown in Fig. 12.
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FIG. 11. Comparison of the convergence histories between the genetic algorithm and the hybrid scheme
the 2D six-circle case.

4.5. Study of Parameterization

To demonstrate the flexibility of the current scheme, different parameterization meth
were applied to study more complex cases. Figure 13 shows that the exact and reconstri
solutions using five Legendre polynomials for a configuration with two irregular shap
objects. Itis seen that the reconstructed solution matches the exact solution quite well ex
in the very fine details of the shape. However, to obtain a satisfactory reconstructed solu
for more irregular shapes, such as an object with many sharp angles, using the Lege
polynomials may not be adequate. Figure 14 shows the exact solution and the reconstrt
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FIG. 12. Comparison of the exact and reconstructed solutions (a) the genetic algorithm and (b) the hyl
scheme for the six-circle case.
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FIG. 13. Comparison between exact and reconstructed solutions using five degrees of Legendre polyno
parameterization for two irregular objects.

solution using the point parameterization with 32 parameters as described in Eq. (7) f
star-like object. Despite a less than perfect match, the overall characteristics of the ok
such as the location, area, and presence of large spikes are well reconstructed.

The examples shown so far assumed that the number of internal objects is known
practical applications, however, the number of internal objects is usually unknown.
make the current EIT software more flexible, we added an extra parameter to each inte
object in addition to the parameters describing the position and shape. This extra paran
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FIG. 14. Comparison between exact and reconstructed solutions using point parameterization with 32 p
meters for one irregular object.
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FIG. 15. Comparison between exact and reconstructed solutions obtained using an initial guess of 10 ci
to reconstruct the three-circle case.

is binary and activates the internal object if equal to 1 and deactivates it if equal to
With this extra on/off parameter, one can reconstruct the image without knowing the ex
number of internal objects. Figure 15 shows the reconstructed solution which was obtai
by using an initial guess of 10 circles to reconstruct the three-circle case. The circles v
dotted lines shown in Fig. 15 were deactivated by the algorithm during the converge
procedure.

4.6. Study of Noise Influence

An important question is to what extent the current scheme is sensitive to errors in
experimental measurements. The examples shown so far assumed experimental datz
no errors. To determine the sensitivity to inherent experimental errors, a series of sim
tions were conducted for the two-dimensional three-circle case. Three different degree
accuracy in experimental data were represented by imposing random chamﬁj}e&vith
maximums 10, 20, and 40%. Since the altered data does not necessarily satisfy the La
equation, the error between the altered data and the numerical prediction is not expect
converge to zero. To determine the influence of noise, the reconstructed solution is c
pared to the exact solution by computing the differences in the parameters using the F
value

B \/Ziazl Z?:l(pij - pij)2

- 3 3 A2 (21)
\/Zi:le:l(piJ)

€p

where f)ij and pij are the parameters of the exact solution and the reconstructed soluti
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FIG. 16. Comparison of convergence histories of parameter RMS errors for different degrees of noise.

respectively. For the two-dimensional three-circle case, each circle has three parame
X, Y, r. The convergence histories of parameter RMS error for different cases are show
Fig. 16. It is seen that with the higher level of noise the parameter RMS epragached
the plateau region earlier. Although under the influence of 40% random agissjuces to

a relatively high value, the reconstructed solution visually matches the exact solution gt
well as shown in Fig. 17.
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FIG. 17. Comparison between exact and reconstructed solutions of 40% random noise for the three-ci
case.
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5. CONCLUSIONS

The present study has applied a boundary element method and a hybrid optimiza
method combing the genetic algorithm and the Powell method to solve the inverse prob
of electricalimpedance tomography. A Pareto multiobjective approach was applied to be
use the spatial information in the optimization procedure and to enhance the converge
speed.

Comparisons were made between a GA and a calculus-based Powell optimization me
for 2D and 3D problems from simple to more complex cases. The genetic algorithms sho
the ability to converge robustly to the correct solution in all 2D and 3D problems considel
in the present study. However, the genetic algorithm required a much higher numbe
forward problem solutions and was much slower than the Powell method. The hyk
scheme combining the Powell method and the genetic algorithm significantly improved
convergence speed and was very robust even in the most complex cases we tested.

With a point parameterization method, the current scheme was found to be success
applicable to reconstruct highly irregular internal objects. Despite less than the per
match, the overall characteristics were well captured. By adding an extra on/off parame
the current scheme was also successfully applied to reconstruct the image without a p
knowledge of the exact number of internal objects.

The study of the influence of noise showed that the current scheme is robust in
presence of noise for the cases tested. This implies that it may still work well when 1
experimentally measured data is of low accuracy.
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