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An optimization method based on a genetic algorithm (GA) and a boundary
element method is applied to solve an electrical impedance tomography problem.
The scheme is applied to reconstruct highly irregular shapes and to image and count
objects inside a host medium of different impedance. A Pareto multiobjective op-
timization method is applied to improve the performance of the GA. Comparisons
between the GA and a calculus-based method for selected test problems show that the
calculus-based method outperforms the GA in simple cases but that for more com-
plex cases the GA reaches the correct solution whereas the calculus-based method
does not. A hybrid scheme that we developed combining a calculus-based method
and the GA is shown to be the most efficient and robust even when applied to the
complex cases we tested. The sensitivity of the current scheme is evaluated in the
presence of noise. c© 2001 Academic Press

Key Words:electrical impedance tomography; genetic algorithm; boundary ele-
ment method; inverse problem.

1. INTRODUCTION

Electrical impedance tomography (EIT) is a powerful imaging technique with a wide
variety of applications requiring visualization of inaccessible objects or features. These
include multiphase flows [1, 2], visualizing combustion [3], medical imaging [4], nonde-
structive evaluation of structures, determination of underground contaminant seepage, etc.
In the EIT technique, the distribution of conductivity inside a domain is sought by applying
specified currents (or voltages) at some parts of the interrogated domain surface and
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FIG. 1. Schematic of the electrical impedance tomography method.

performing measurements of the voltages (or currents) at other parts. The equations for
the electric field then provide a relationship between the conductivity distribution inside the
domain and the measured currents (or voltages). Solution of the resulting inverse problem
then provides a map of the material distribution in the domain. A schematic of the EIT
procedure is shown in Fig. 1. According to the user specifications, a control board arranges
combinations of injection electrodes to form current (or voltage) patterns. The resulting
voltages (or currents) are then measured at all combinations of measurement electrodes.
The data on all voltages and currents over all injection and measurement electrodes are then
stored using data acquisition boards, and used in the reconstruction procedure which is an
inverse problem solution.

In EIT the equations are nonlinear and the inverse problem is solved by iterative techniques
involving optimization procedures. Each iterative step requires solution of a boundary value
problem, followed by the solution of a minimization problem. Schemes based on the finite
element method [5, 6] are time consuming and require extensive computational resources,
which make them difficult for practical usage, especially in 3D. We have developed [7–10]
an efficient solution procedure based on the boundary element method (BEM) offering
substantial speed-ups over conventional techniques. In our previous studies we have applied
calculus-based optimization methods and a least squares approach, which combined the
error evaluation function into a single objective function, to solve the inverse problem.
These calculus-based methods such as the Powell method and the downhill simplex method
were able to quickly reach the optimal solution for many cases we have studied. However,
we encountered difficulties in robustness when the test cases became too complex, and when
the desired global minimum was hidden among many local minima. Furthermore, the least
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squares approach has the disadvantage of subsuming a detailed spatial error distribution
into one all encompassing error function, which can have multiple local minimums.

Genetic algorithms (GAs), such as described by Holland [11] and Goldberg [12], are intel-
ligent search methods based on a biological evolution mechanism concept and on Darwin’s
survival-of-the-fittest theory for solving complex problems. They are problem-independent
and can process information generated at previous stages of a search process. They comprise
concepts such as natural selection, quick exploration, and information collection in a design
space. In contrast to most classical optimization methods, a GA requires no gradient infor-
mation and results in simultaneous determination of multiple minima rather than a single
local minimum. These characteristics make the GAs powerful tools for solving optimization
problems. Since a GA has the characteristic of maintaining a population of solution and
can search in parallel for many objectives, it inherently satisfies the requirement of seeking
a Pareto optimal set in a multiobjective optimization problem. Therefore, it does not re-
quire combining multiple objectives into a single objective and can incorporate the concept
of Pareto optimization [13] to solve an EIT multiobjective problem. This method allows
taking into account all physical restrictions simultaneously and avoids the occurrence of
cancellation effects between the various objectives as encountered in our previous studies
[7–10].

The BEM approach that we have previously developed [14, 15] is applied here to solve the
forward EIT problem in which for a given conductivity distribution we compute the currents
(or voltages) at selected nodes resulting from input voltages (or currents) at other nodes.
The inverse problem is then solved by applying optimization methods which minimize
the error between the predicted and the measured currents (or voltages). In this study, two
optimization schemes, the Powell method and a basic GA, are applied and their performances
are compared for several test problems. To take advantage of the strengths of both methods,
we then developed a hybrid scheme combining the GA and the Powell method to improve
the performance of the optimization routine. All the example cases considered in the present
study concern imaging the interior of a material of a given fixed conductivity (such as a
metal or a liquid), which contains inclusions of zero or negligible conductivity (such as gas
bubbles).

2. GOVERNING EQUATIONS

Consider an electrical impedance tomography problem where the voltage at selected
points on the boundary is imposed. The current at boundary locations other than the elec-
trodes is zero. At the electrodes the electrical current is measured in order to obtain the
distribution of conductivity,σ , in the material. For a regionÄ bounded by the surfaceS, the
electric potential,φ, satisfies the following equation expressing electric charge conservation:

∇[σ(∇φ)]= 0 inÄ. (1)

With n being the unit normal vector to the boundary surface,φ is subjected to the following
boundary conditions:

σ
∂φ

∂n
andφ known at the electrodes,

(2)
∂φ

∂n
= 0 at the rest of the boundary.



436 HSIAO, CHAHINE, AND GUMEROV

Unfortunately, a direct method for obtainingσ from these equations is not readily available.
Instead, an inverse problem is solved through scanning and analysis of a wide space of
guessed distributions of conductivity. For each guessed distribution ofσ a forward problem
is solved for the electric potentialφ. Then, minimization of the error between the predicted
and the measured values ofφ on the boundary is sought in the space of guessed distributions
of σ . The forward problem procedure solution is repeated as many times as necessary until
satisfactory convergence is achieved.

In many applications, the domain to be imaged consists of regions of almost constant
conductivity,σ1, embedded in a continuous phase of another material of almost constant
conductivity,σ2 (e.g., a spatial multiphase distribution: solid, liquid, or gas). In this case the
goal of the imaging is to determine the location of the interfacesSint. Since the conductivity
is practically constant within each of the materials, the field equation reduces to

∇2φi = 0 inÄ, i = 1, 2, (3)

wherei = 1, 2 represents each of the two substances. The boundary conditions at the outer
surface are given by Eq. (2). In addition, the conditions of continuity of the potential and
flux at the unknown interface(s)Sint can be written as

φ1|Sint = φ2|Sint , σ1
∂φ1

∂n

∣∣∣∣
Sint

= σ2
∂φ2

∂n

∣∣∣∣
Sint

. (4)

In these problems the forward problem consists of the solution of the Laplace equation in
each medium using the coupling boundary conditions Eq. (4).

An additional important simplification arises if the interfaces to be imaged enclose mate-
rials of vanishing conductivity. Such situations are common in practice, e.g., in determining
the distribution of air bubbles in a liquid or cracks in a structure. In this special case, the
boundary conditions reduce to

∂φ

∂n
= 0 onSint. (5)

Therefore, instead of solving the conductivity distribution, the objective of the problem is
now to obtain the material interface,Sint.

3. NUMERICAL METHOD

The inverse problem in EIT can be addressed by a standard multistep, multidimensional
optimization procedure, which consists of:

1. Parameterization: Parameterize the guessed conductivity distribution or shape of ma-
terial interface.

2. Forward problem solver: Solve the Laplace equation corresponding to the guessed
parameters.

3. Objective function: Evaluate the difference between the numerical solution of the
guessed distribution and the actual measurement.

4. Optimization: Make a series of guesses of the parameters and obtain the final guess
by minimizing the objective function.
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3.1. Parameterization

One efficient way to make the iterative optimization routine successful is to parameterize
the conductivity distribution, i.e., the conductivity distribution is represented in terms of a
suitably selected descriptive basis function with a set of coefficients/parameters. Since the
present algorithm is for imaging the interior of a material that consists of regions of constant
conductivity, the parameterization can be selected to describe the shape and location of the
internal objects. For example, the shape of an internal object in a 2D configuration can be
represented by the sum of a series ofN Legendre polynomials

S(θ) =
N−1∑
k=0

αk Pk(cosθ − θ0), (6)

where S is the distance from the origin selected to describe the object(x, y), andθ is
the angle from a reference direction described by an additional parameterθ0. Pk is the
Legendre polynomial of orderk, andαk are N unknown parameters. This results in a
total of N + 3 parameters for each object. A similar parameterization but using Fourier
components was recently published [16]. Another possibility of describing the internal
object is to parameterize the object with the coordinates ofN points in addition to those at
its center. Each point is at a distancerk from the center of the object:

S(θ) = rk, k = 1, . . . , N. (7)

This results in a total ofN + 2 parameters for each object. For the relatively simple standard
2D problem of identifying cylindrical objects of vanishing conductivity inside a cylindrical
container, each internal object can be parameterized by its radius,r , and the coordinate of its
center. Similarly, for three-dimensional case of a container with internal regions consisting
of spheres of vanishing conductivity, each internal sphere is parameterized by its radius,r ,
and the coordinate of its center (x, y, z).

3.2. Forward Problem Solver

To solve the forward problem at each iteration, a numerical scheme is required to solve
the Laplace Eq. (3). In the current study we have selected the boundary element method
for its great advantage of considerably reducing computational time especially for three-
dimensional problems when compared to the finite element method. Indeed, by requiring
discretization of only the boundary instead of the full domain, the BEM reduces the dimen-
sion of the problem by one and leads to orders of magnitude reduction in memory and CPU
time requirements.

The boundary element method is based on an integral solution of the Laplace equation
using Green’s theorem, which can be written in the following form:∫

Ä

(φ∇2G− G∇2φ) dÄ =
∫

S
n · [φ∇G− G∇φ] dS, (8)

whereG is Green’s function. Equation (8) transfers the domain integral into the surface
integral and thus reduces the dimension of the problem by one.G is selected to be harmonic
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everywhere but at discrete points such as the electrodes

G =
{

log |x− y| in 2D,

− 1
|x−y| in 3D,

(9)

wherex is a point inÄ andy is a point on the boundary surfaceS. Substituting Eq. (9) into
Eq. (8), we have

aπφ(x) =
∫

S
ny · [φ(y)∇G(x, y)− G(x, y)∇φ(y)] dS, (10)

whereaπ is the angle in 2D (solid angle in 3D) under which the pointx sees the rest of the
domain. For formulations with smooth boundaries we have

a =
{

2, x ∈ Ä in 2D,

4, x ∈ Ä in 3D,
a =

{
1, x ∈ S in 2D,
2, x ∈ S in 3D.

(11)

To solve Eq. (10) numerically with the BEM, it is necessary to discretize the surface of
all objects including the internal objects and the container into panels. In 2D we accomplish
this by usingP segments withN nodes along the boundary and by fitting cubic splines
through the discrete points on the boundary. In 3D we useP triangular elements with
N nodes on the boundary. As a result of this discretization, every surface integral evaluated
at any field pointx becomes a summation over all panels of the influence of singularity
distributions over each individual panel. This enables us to write Green’s identity in the
form

aπφ(x) =
P∑

k=1

∫
Sk

(
φ(y)

∂G

∂n
(x, y)− G(x, y)

∂φ

∂n
(y)
)

dSk. (12)

To evaluate the integrals given in Eq. (12), it is necessary to prescribe the variation ofφ

and∂φ/∂n. For this problem, we assume that these quantities vary continuously over a panel
and can be described by the surrounding nodes. By applying a cubic spline interpolation in
2D and a linear Lagrangian interpolation in 3D for each panelSk, each elementary integral
can be written as a linear combination ofφ or∂φ/∂n evaluated at the surrounding nodes. The
performance of integration (including special cases that are singular when the collocation
node lies in the interval of integration) is an involved process, and details can be found in
our previous studies [14, 15]. With the integration over each panel performed, the discreized
Eq. (12) can be expressed as

aπφ j =
P∑

k=1

m∑
i=1

[
Bk

i φ
k
i − Ak

i

(
∂φ

∂n

)k

i

]
, j = 1, N, m=

{
2, in 2D,

3, in 3D,
(13)

whereφk
i and∂φ/∂nk

i are the potential and its normal derivative at nodei of panelk, and
Ak

i andBk
i are influence coefficients obtained from elementary integration.

Following a collection approach in which the contributions due to the same node are
summed up, Eq. (13) can be rewritten as

aπφ j =
N∑

i=1

[
B̄iφi − Āi

(
∂φ

∂n

)
i

]
, j = 1, N, (14)
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whereĀ andB̄ are the altered influence coefficients due to summation of the same node. It
is noted that the collection approach transfers the panel contribution in Eq. (13) to the node
contribution in Eq. (14). Equation (14) can be expressed in a matrix form as

(aπ I + Ā)φ= B̄
∂φ

∂n
, (15)

whereI is anN × N identity matrix, and̄A andB̄ areN × N influence coefficient matrices.
With ∂φ/∂n known on all boundary nodes, Eq. (15) is a linear system ofN equations and can
be readily solved forN unknowns ofφ, using classical methods such as LU decomposition
and Gauss elimination.

3.3. Objective Function

In the current study, the error between the predicted solution and the measured data is
given by

ek
l = φ̂k

l − φk
l , l = 1, . . . ,ME, and k = 1, . . . , NE, (16)

whereφ̂k
l andφk

l are the measured and predicted values of the potential at electrodel for
the current injection configurationk, ME is the number of measuring electrodes, andNE is
the number of experiments. We thus haveME × NE measures of the error,ek

l .
Previously [7–10], we applied a least squares approach to construct a single objective

function using the following root mean square (RMS) error function:

f =
√√√√ NE∑

k=1

ME∑
l=1

(
φ̂k

l − φk
l

)2
. (17)

One shortcoming of performing the minimization using this single objective function is that
all the physical information available from each experiment at all electrodes are added into
a single objective function. However, the physical information of the error distribution may
have a spatial pattern that could be advantageously used. This information is useful for an
optimization routine to better characterize the predicted solutions so that the convergence
rate can be enhanced. To better use this physical information, a multiobjective approach
is therefore applied in the current study. To demonstrate this we apply the multiobjective
approach to a two-dimensional cylindrical container. If there arenobj objective functions
applied, then the objective functions for are constructed as follows:

fi =
√√√√ M2∑

l=M1

NE∑
k=1

(
φ̂k

l − φk
l

)2+
M2+ME/2∑

l=M1+ME/2

NE∑
k=1

(
φ̂k

l − φk
l

)2
,

(18)

M1 = (i − 1)ME

2nobj
+ 1, M2 = i ME

2nobj
, i = 1, . . . ,nobj.

Based on Eq. (18), the objective functions will be formed each by adding the errors from two
noncontiguous quarters on the container surface for a two objective approach. However, for
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both single objective and multiobjective approaches the convergence speed is represented
by computing the normalized root mean square error

ε =
√∑NE

k=1

∑ME
l=1

(
φ̂k

l − φk
l

)2√∑NE
k=1

∑ME
l=1

(
φ̂k

l

)2
. (19)

In solving inverse problems, it is quite important to constrain the solution using a priori
information to mitigate any ill-posed character of the problem. For example, one can use
obvious geometric constraints such as the fact that the internal objects cannot overlap or
intersect the container, or that their size is bounded by known minimum and maximum
values. To cope with the constrained problem, the objective function is modified to return
artificially very large values when presented with unrealizable configurations. These are
made more or less large according to the degree of violation. In addition, for calculus-based
methods the error gradient vector is set to the unit vector in the direction that leads away
from the error.

3.4. Optimization Routines

The success of developing an efficient and robust EIT software highly relies on the opti-
mization routine. Here, several optimization routines, including a calculus-based method,
a random search algorithm, and a hybrid scheme, are applied and compared for several test
problems.

3.4.1. Powell Direction Set Method

The first method used here is the Powell direction set method also known as the Davidon–
Fletcher–Powell method. The Powell method applied in the current study is the version
described in [17, 18] in which an initial guess and a set of independent search directions
are provided to the program. In each iteration the method serially performs a sequence
of line minimizations along the various directions in the space of parameters. At the end
of each iteration the method replaces one of the original directions with the line joining
the starting and ending points. Care is taken to ensure that the directions remain linearly
independent. The iteration is terminated when either the convergence rate or the error
between the predicted and the exact solutions are smaller than prescribed values. This
version of the Powell method has been successfully applied to the EIT problem [7–10] and
widely applied to other optimization and minimization problems (see for instance [19–22]).
Although there are many other implementations of the Powell method such as described in
[23, 24], the current study does not intend to include a comparative study of the merits of
each of these implementations.

3.4.2. Simple Genetic Algorithm

An implementation of a GA begins with the selection of a population of members. Each
member in the population represents a guessed solution of the problem i.e., a set of parame-
ters describing the shape and position of the sought objects). The GA identifies each member
by encoding it as a chromosome (typically, bit strings). The objective function described
above is an evaluation function that plays the role of the environment, rating the members
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in terms of their fitness. This is the mechanism applied to select good quality members of a
population to reproduce the population of the next generation. The reproduction procedure
is such that well-fit members are given more chance to reproduce than members which are
poorer performers. The process of evolving from a given population to the next population
constitutes one generation in the execution of a GA. The basic implementation of a simple
genetic algorithm can be summarized as follows [12]:

Step 1, Initialization: Create an initial random population of members and identify each
member with a chromosome (bit strings).

Step 2, Evaluation: Evaluate the fitness of each member in this population based on the
corresponding value(s) of the objective function(s).

Step 3, Selection: Select two parent chromosomes from the current population to repro-
duce offsprings. The selection process is stochastic with the high fitness members being
more likely to be selected.

Step 4, Reproduction (crossover): Generate two offsprings from two parent chromosomes
by exchanging bit strings.

Step 5, Mutation: Apply a random modification of the bit strings to each offspring with
a small probability.

Step 6, Iteration: Repeat Steps 2, 3, and 4 until the number of offsprings in the new
population is the same as the number of parents in the old population.

Step 7, Iteration: Go to Step 2.

To improve the search process of the global optimum, an additional operator, elitism,
was implemented. Elitism forces the best individual to always be selected for reproduction
until someone comes along which is stronger to take over its place. After the population
is generated, the GA checks to see if the best parent has been replicated. If not, then a
random individual is chosen and the chromosome set of the best parent is mapped into that
individual.

To adapt the GA to the current problem, each guessed distribution of the internal objects
is identified by a binary chromosome. Since each internal object is parameterized either
by the coordinates of its center and a series of Legendre polynomials or by the distance
of the surface nodes from its center, each set of parameterspi (i = 1, K ) is represented
in the genetic structure. This means that each object hasK independent variables, which
correspond toK genes represented as a bit string of total lengthM . Each parameter has its
own bit string of lengthLi (i = 1, K ). If there areN objects inside a material, then each
possible distribution of internal bodies is represented as a binary chromosome of length
M × N. Figure 2 shows an example of the representation of a chromosome. Since each
bit string represents an integerJ while each variable is given by a real valuea, we chose
a mapping between the real valuea (p ≤ a ≤ q) and the integerJ (0≤ J ≤ L − 1) such
that the integer interval [0, 2L−1] is mapped onto the real interval [p,q].

3.4.3. Multiobjective Genetic Algorithm with Pareto Optimization

Instead of smearing all the information into a single objective, we implement a multi-
objective optimization method incorporating the concept of Pareto optimal set [13] to
exploit the knowledge of spatial distribution of the error. APareto optimal setcan be
described as follows: A point in the objective variables space is Pareto optimal if one
cannot find another point which is better with respect to at least one objective without
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FIG. 2. A sketch showing conversion of the parameter set describing a guessed solution into a chromosome
bit string.

sacrificing with respect to at least one other objective. This means that the Pareto opti-
mum gives a set of nondominated points for which no objective can be improved with-
out degrading at least one other objective. Searching for the Pareto optimal set (a group
of solutions) is the goal for solving the multiobjective problem. Once the Pareto opti-
mal set is determined, the decision maker is able to define the optimal solution from the
Pareto optimal set according to other nonmodeled criteria. Since the GA has the char-
acteristic of maintaining a population of solutions and can search in a parallel man-
ner for many nondominated solutions, the GA inherently satisfies the requirement of
seeking a Pareto optimal set in a multiobjective optimization problem. Therefore, we
use a Pareto GA similar to that suggested by Cheng and Li [13] to solve the current
problem.

The current Pareto GA is constructed by revising the simple GA. Unlike the simple
GA, where the fitness function is determined directly from the objective function, in
the Pareto GA the fitness function of each individual is determined from its ranking. To
achieve this goal a ranking procedure [12] is used. At each generation nondominated solu-
tions are selected and assigned rank 1. From the remainder of the population, nondominated
solutions are identified and assigned rank 2. This process continues for rank 3, 4, and so on
until the entire population is ranked. After the whole population is ranked, the fitness value
of points in ranki can be determined by the following [12]

Fi = Mp(Nr − i + 1)∑Nr
i=1(Nr − i + 1)Ni

, (20)

whereMp is the population size,Nr is the highest rank of the population,Ni is the population
size of ranki , andFi is the fitness of a point rankedi .



HYBRID GENETIC/POWELL ALGORITHM & BEM 443

FIG. 3. A flow chart for the Pareto optimization EIT multiobjective problem using a genetic algorithm.

To improve the search process of the Pareto optimal set, the current Pareto GA also uses
the elitism operator. However, instead of ensuring only reproduction of members with the
highest fitness, the elitism technique of the Pareto GA ensures that all members with rank
1 appear in the next generation. Figure 3 illustrates the multiobjective GA optimization
scheme that we developed for the EIT problem.

3.4.4. Hybrid Optimization Scheme

Although the GA is recognized as a highly robust optimization scheme, the slow con-
vergence rate has prevented the GA from becoming practical in many applications. On the
other hand, the calculus-based methods are known for their fast convergence speed but they
are very sensitive to the initial guess of the solution. Therefore, we exploited in the current
EIT problem the benefit of combining the Powell method and the GA. The proposed hybrid
scheme starts with the GA. The Powell method is turned on after a prescribed number of
generations,Ng, is iterated. The connection between the GA and the Powell method is
made by choosing the best solution from the current population to be the initial guess for
the Powell method. When the convergence rate of the Powell method reaches a plateau
without reaching the criterion for global minimum, then the optimization routine returns to
the GA which is made to iterate again forNg generations, and the process is repeated until
the global minimization criterion is reached.
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4. RESULTS AND DISCUSSION

4.1. Numerical Aspects

In order to test the proposed method, we start by using the forward problem solver to gener-
ate a set of ideal “experimental” data for a given distribution of internal objects. For the two-
dimensional case the ideal “experimental” data is collected at 20 electrodes on the container
surface. Similarly, the container and each internal objective is discretized using 20 panels.

Several parameters of the GA basic operators need to be determined for optimal perfor-
mance. These parameters include the mutation probability, the crossover probability, the
discretized size of the parameters, and the population size. As suggested by Goldberg [12]
the mutation probability was set to the inverse of the population size and the crossover
probability was set to 0.6. The solution accuracy of the GA depends heavily on the length
of the chromosome because a longer bit string yields a smaller discretized size of the param-
eters. The smaller the discretized size of the parameters is, the more accurate the solution
that can be obtained. Decreasing the discretized size of the parameters, however, increases
the search domain and leads to a slower convergence process. Therefore, a compromise is
necessary. In the present study, the discretized size was chosen to be less than 2% of the
characteristic length, which was selected here to be the smallest projected dimension of the
imaged domain.

The determination of the population size depends on the complexity of the problem, e.g.,
number of internal objects and complexity of object shapes. The more complex the problem
is, the larger the population size should be. For a simple two-dimensional case, such as one
or two internal objects with circular shape, a population with 50 individuals is sufficient.
However, for a complex case a small population size may lead the GA to converge to a
local minimum. To demonstrate the importance of the population size in a complex case,
two different population sizes, 50 and 100 were used for a two-dimensional four-circle
case with one of the circles being relatively small and somewhat hidden among the other
larger circles. Both cases were used to conduct a search until the convergence rate reached
a plateau. The converged solutions for using 50 and 100 individuals are compared to the
exact solution and shown in Fig. 4. It is seen that with a smaller population size the GA did
not converge to the global minimum while with a larger population size the GA predicted
the solution quite well.

4.2. Comparison between Single and Multiobjective Approaches

Although it is expected that keeping spatial information in the error functions will im-
prove the convergence rate, increasing the number of objective functions also slows down
the search process due to the overhead of keeping all first-rank individuals. To test the
efficiency of using more than one objective function for our current problem, we tested both
single and two objective approaches for two-dimensional three-circle cases. Comparison of
convergence rates for these approaches is shown in Fig. 5. It is found that the two objective
approach reached the convergence criterion faster than single objective approach. Similar
comparative results were also observed for the two-dimensional four-circle case.

4.3. Comparison between Powell Method and Genetic Algorithm

We conducted systematic comparisons between our implementation of the Powell me-
thod and of the GA in two- and three-dimensional cases. We found that in our case the
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FIG. 4. The exact and reconstructed solutions of four-circle case using the genetic algorithm for population
size of (a) 50 and (b) 100.

calculus-based Powell method outperforms the GA in simple cases, as shown by comparison
of the convergence histories for both one- and two-circle 2D cases in Fig. 6. Both the Powell
method and the GA converged very well to the exact solution. The Powell method, however,
reached the exact solution much faster than the GA for both cases.

To increase the problem complexity, the number of circles was increased to 3 with 2 of
them very close to each other. Figure 7 shows the exact solution and the converged solutions
of the Powell method and the GA in this case. A comparison of the convergence histories for

FIG. 5. The convergence histories of single and two objective approaches for the 2D three-circle case.
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FIG. 6. Comparison of the convergence histories of the Powell method and the genetic algorithm for the one-
and two-circle cases.

the Powell method and the GA is shown in Fig. 8. It is seen that in this case the Powell method
converged to a local minimum while the GA correctly found the global minimum. Although
we tested several different initial guesses for the Powell method, none of them reached the
exact solution. Similar comparisons were also conducted for two spheres (eight parameters)

FIG. 7. Comparison of the exact and reconstructed solutions using the Powell method and the genetic algorithm
for the three-circle case.
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FIG. 8. Comparison of the convergence histories of the Powell method and the genetic algorithm for the
three-circle case.

in the three-dimensional case. Figure 9 shows the exact solution and the converged solution
of the Powell method for the two-sphere case. It is seen that after convergence one of the
spheres is still offset from the exact solution. In this case the GA still preformed very well
and the converged solution ended indistinguishable to the eye from the exact solution for

FIG. 9. Exact and reconstructed solutions using the Powell method for the two-sphere case.
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FIG. 10. Comparison of the convergence histories between the genetic algorithm and the hybrid scheme for
the 2D three-circle case.

both spheres. It is important to note that there are different implementations of the Powell
method. Although the version of the Powell method applied in the current study fails to
reach the global minimum, there may be other versions of the Powell method that may
improve the result. Nevertheless, searching for the best version of the Powell method was
not within the scope of the current study.

4.4. Comparison between the Genetic Algorithm and Hybrid Scheme

To demonstrate how the hybrid scheme can improve the convergence rate, we applied it
to solve the three-circle case shown earlier withNg = 50. The comparison of convergence
histories between the GA and the hybrid scheme is shown in Fig. 10. It is seen that strong
improvement is achieved when the Powell method is first turned on after 50 generations
(3000 function calls). The hybrid method reduces the error faster than the GA until the
convergence rate reaches a plateau. The iteration process then returns back to the GA and
continued for another 50 generations. When the Powell method is turned on again, a second
significant drop in the RMS error is observed and the global minimum is reached. It is noted
that the procedure can be further optimized by modification of the procedure parameters
(e.g., number of generations before switching). The improvement in convergence rate is
more significant when the studied case is more complicated. For very complex cases, the
GA may stop converging before reaching the global minimum because the homogeneity
of the chromosomes may be reached first. In this case, the improvement of the solution
will only rely on the mutation and become a very slow process. As shown in Fig. 11, for
a two-dimensional six-circle case the convergence rate of the GA reached a plateau while
the hybrid scheme withNg = 100 converged very fast. The final solutions of both schemes
are also compared with the correct answer and are shown in Fig. 12.
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FIG. 11. Comparison of the convergence histories between the genetic algorithm and the hybrid scheme for
the 2D six-circle case.

4.5. Study of Parameterization

To demonstrate the flexibility of the current scheme, different parameterization methods
were applied to study more complex cases. Figure 13 shows that the exact and reconstructed
solutions using five Legendre polynomials for a configuration with two irregular shaped
objects. It is seen that the reconstructed solution matches the exact solution quite well except
in the very fine details of the shape. However, to obtain a satisfactory reconstructed solution
for more irregular shapes, such as an object with many sharp angles, using the Legendre
polynomials may not be adequate. Figure 14 shows the exact solution and the reconstructed

FIG. 12. Comparison of the exact and reconstructed solutions (a) the genetic algorithm and (b) the hybrid
scheme for the six-circle case.
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FIG. 13. Comparison between exact and reconstructed solutions using five degrees of Legendre polynomial
parameterization for two irregular objects.

solution using the point parameterization with 32 parameters as described in Eq. (7) for a
star-like object. Despite a less than perfect match, the overall characteristics of the object
such as the location, area, and presence of large spikes are well reconstructed.

The examples shown so far assumed that the number of internal objects is known. In
practical applications, however, the number of internal objects is usually unknown. To
make the current EIT software more flexible, we added an extra parameter to each internal
object in addition to the parameters describing the position and shape. This extra parameter

FIG. 14. Comparison between exact and reconstructed solutions using point parameterization with 32 para-
meters for one irregular object.
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FIG. 15. Comparison between exact and reconstructed solutions obtained using an initial guess of 10 circles
to reconstruct the three-circle case.

is binary and activates the internal object if equal to 1 and deactivates it if equal to 0.
With this extra on/off parameter, one can reconstruct the image without knowing the exact
number of internal objects. Figure 15 shows the reconstructed solution which was obtained
by using an initial guess of 10 circles to reconstruct the three-circle case. The circles with
dotted lines shown in Fig. 15 were deactivated by the algorithm during the convergence
procedure.

4.6. Study of Noise Influence

An important question is to what extent the current scheme is sensitive to errors in the
experimental measurements. The examples shown so far assumed experimental data with
no errors. To determine the sensitivity to inherent experimental errors, a series of simula-
tions were conducted for the two-dimensional three-circle case. Three different degrees of
accuracy in experimental data were represented by imposing random changes inφ̂k

l with
maximums 10, 20, and 40%. Since the altered data does not necessarily satisfy the Laplace
equation, the error between the altered data and the numerical prediction is not expected to
converge to zero. To determine the influence of noise, the reconstructed solution is com-
pared to the exact solution by computing the differences in the parameters using the RMS
value

εp =
√∑3

i=1

∑3
j=1

(
p̂ j

i − pj
i

)2√∑3
i=1

∑3
j=1

(
p̂ j

i

)2
, (21)

where p̂ j
i and pj

i are the parameters of the exact solution and the reconstructed solution,
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FIG. 16. Comparison of convergence histories of parameter RMS errors for different degrees of noise.

respectively. For the two-dimensional three-circle case, each circle has three parameters,
x, y, r . The convergence histories of parameter RMS error for different cases are shown in
Fig. 16. It is seen that with the higher level of noise the parameter RMS error,εp, reached
the plateau region earlier. Although under the influence of 40% random noise,εp reduces to
a relatively high value, the reconstructed solution visually matches the exact solution quite
well as shown in Fig. 17.

FIG. 17. Comparison between exact and reconstructed solutions of 40% random noise for the three-circle
case.
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5. CONCLUSIONS

The present study has applied a boundary element method and a hybrid optimization
method combing the genetic algorithm and the Powell method to solve the inverse problem
of electrical impedance tomography. A Pareto multiobjective approach was applied to better
use the spatial information in the optimization procedure and to enhance the convergence
speed.

Comparisons were made between a GA and a calculus-based Powell optimization method
for 2D and 3D problems from simple to more complex cases. The genetic algorithms showed
the ability to converge robustly to the correct solution in all 2D and 3D problems considered
in the present study. However, the genetic algorithm required a much higher number of
forward problem solutions and was much slower than the Powell method. The hybrid
scheme combining the Powell method and the genetic algorithm significantly improved the
convergence speed and was very robust even in the most complex cases we tested.

With a point parameterization method, the current scheme was found to be successfully
applicable to reconstruct highly irregular internal objects. Despite less than the perfect
match, the overall characteristics were well captured. By adding an extra on/off parameter,
the current scheme was also successfully applied to reconstruct the image without a priori
knowledge of the exact number of internal objects.

The study of the influence of noise showed that the current scheme is robust in the
presence of noise for the cases tested. This implies that it may still work well when the
experimentally measured data is of low accuracy.
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